
InCLOUDer: A Formalised Decision Support Modelling Approach to Migrate
Applications to Cloud Environments

Adrián Juan-Verdejo 1,2, Steffen Zschaler 3, Bholanathsingh Surajbali 2, Henning Baars 1, Hans-Georg Kemper 1

1 Information Systems Chair, Stuttgart University, Germany. adrian.juan@cas.de,{baars,kemper}@wi.uni-stuttgart.de
2 CAS Software A.G, Karlsruhe, Germany. {adrian.juan, b.surajbali}@cas.de
3 Department of Informatics, King’s College London, UK. szschaler@acm.org

Abstract—An increasing number of organisations want
to migrate their existing applications to cloud environ-
ments to benefit from the increased scalability, flexibility,
and cost reduction. Additionally, systems migrated to
cloud environments have to fulfil their functional require-
ments, satisfy their users’ requirements, and meet the or-
ganisation’s criteria for cloud migration. All these different
dimensions driving the migration decision conflict with
each other. Therefore, organisations trade them off for
one another. Migrating applications to cloud environments
becomes a complex decision process for which organi-
sations need assistance. We provide a decision support
system to assist organisations by taking into account the
formal description of the parameters affecting the cloud
migration and our proposed metrics for objective and
subjective criteria. Our approach to cloud migration allows
organisations to describe their cloud migration criteria;
the architecture, properties, and requirements of their
applications; and the available cloud service offerings. We
semi-automate the migration decision with our transpar-
ent formalisations to quantify criteria and constraints.

Keywords-multi-cloud migration; decision support

I. Introduction

Nowadays, many organisations and individuals de-
velop their computing solutions directly for cloud en-
vironments to profit from the potential cost reduction
and increase in agility [1]. Often organisations also
want to leverage cloud computing to run applications
which have been already developed for a different
computing environment [1]. Those organisations have
to properly adapt their applications to the right cloud
environment in order to avoid the risk of failing in
this migration process [2]. Many interdependent di-
mensions [3] and parameters [2] affect the decision of
to what cloud service offering to migrate an applica-
tion and how to do it. Hence, the migration decision
becomes a multi-criteria optimisation problem.

The existing research works usually address some
specific parts of this decision-making problem such
as the cloud environment selection [4] or the effects
of a specific dimension affecting the adaptation and
migration of applications to cloud environments [3].
They focus either on the technical, organizational,
social, economic, business, or sensitivity concerns that
affect applications cloud migration [3], [5], [6]. The
problem with these approaches is that they separate as-
pects of the migration decision that are connected and

depend on one another. Whether to migrate parts of an
application and how to do it depends on the organisa-
tion’s interest and focus in moving their applications
to cloud environments, the application’s architecture
and properties, and the selected cloud service [7].
Additionally, stakeholders describe differently and not
transparently their migration criteria, their applica-
tions’ requirements, and the cloud service properties.
This hinders the quantification and comparison of the
different options to migrate an application.

In this work, we aim to provide a formal description
of the parameters that affect the migration of applica-
tions to cloud environments. We propose InCLOUDer,
our approach to cloud migration that allows organisa-
tions to describe the target application’s architecture,
requirements, and properties; the available cloud ser-
vice offerings; and their criteria for application migra-
tion. We propose a transparent formalisation to quan-
tify these criteria and the constraints limiting the cloud
migration process. Which, in turn, partially automates
the migration decision. We show exemplary criteria
and constraints. We have validated our approach by
developing a prototype to support organisations in
solving the multi-criteria optimisation problem.

In the next Section, we motivate our work. Next, in
Section III, we describe research works related to ours,
highlight our contribution in comparison with them,
and explain the research gaps we fill. Next, in Section
IV, we formalise the migration problem our research
work tackles. Further, we explain our InCLOUDer
cloud migration decision support system in Section V
and how it semi-automatically migrates applications
in Section VI. Section VII describes the prototype we
developed to support the theoretical problem formal-
isation and the InCLOUDer cloud migration decision
support system. Finally, we conclude in Section VIII.

II. Motivation

The migration of applications to cloud environments
entails benefits, but also concerns varying from tech-
nical, security and trust issues to organizational, and
legal constraints. Applications to be migrated con-
sist of several components which communicate with
each other to comply to the application’s functional
and non-functional requirements. If organisations do

not correctly adapt their applications to the target
cloud environment, they might experience problems to
meet some quality or economic requirements. Typical
adaptation issues range from compatibility issues be-
tween cloud environments and migrated applications
to restrictive licenses that forbid organisations moving
proprietary software components. Sometimes, perfor-
mance could erode due to the increase in latency due
to the wide-area communication introduced when an
application component is moved to a cloud environ-
ment whereas another dependent component is kept
locally to meet sensitivity-related requirements.

Organisations have different interdependent criteria
and constraints to move their applications to cloud en-
vironments. Organisations typically trade criteria with
one another. Improving the system in a dimension,
as increased computing power, could entail damaging
the system in another one, say cost. These dimensions
are not always equally important to all organisations
and sometimes there are some constraints that an
organisation cannot overcome. As an example, an or-
ganisation might not be allowed to move health care
data outside some private premises and has to run part
of the computation on the local premises in addition to
the cloud environment. The nature of the application
components to be migrated, the application’s users,
and the interest of the organisation migrating the
application shape how to adapt that application to
cloud environments and to what specific cloud service
offering to migrate.

We have evidenced the need to assist organisations
in the complex decision-making problem of migrating
their applications to cloud environments. This is our
motivation to help organisations in selecting the cloud
service offering suitable for their application and their
migration criteria. Organisations may benefit from our
approach as it releases them from the burden of mea-
suring and considering all interdependent dimensions,
criteria, constraints, and factors that affect the cloud
migration and adaptation decision.

III. Related Work

The migration of existing applications to cloud en-
vironments demands from organisations to select a
suitable target cloud service [8], [4] and adapt their
applications to them according to their needs and the
specifics of their application [2]. Whether to migrate or
not an application, how to do it, and to which cloud
service form a multi-dimensional decision problem
affected by a lot of factors, sub-factors, and param-
eters [1], [2]. Organisations have to evaluate many
conflicting criteria before making any decision and the
problem becomes a multiple criteria decision making
problem [9].

The rapid growth of cloud service offerings together
with the heterogeneous cloud providers business mod-
els and their inability to transparently describe their
services hinders the selection of the most suitable
target cloud service [2]. Some research works classify
cloud services for selection by taking into account
many factors and attributes that evidence a cloud
service’s performance, cost and features [4] [10] while
others measure the performance-related parameters
to compare the options [11]. Unlike our work, these
research works decide how to migrate an application
without including information about the target appli-
cation characteristics nor the motivations and criteria
of a specific organisation to migrate to a cloud offering.
Some research works such as [4], [12] use the Analyti-
cal Hierarchy Process to compare service providers and
rank them but they do not automate the process and
therefore require significant user input which hinders
their usage for real-case scenarios.

Some other works incorporate organisation’s criteria
into their decision support tools or prototypes to assist
the migration of applications to cloud environments,
but they only focus in a specific concern and do not
consider the others [3]. Nevertheless, the criteria are
interconnected and oppose one another. Organisations
have to take into account all criteria together instead of
in isolation before making the migration decision [13].
We seek inspiration in research works which deal with
the migration of applications to cloud environment
by taking into account one specific dimension of the
process such as the business and economic implica-
tions [14], technical-related challenges [13], organisa-
tional implications [3], or security and privacy [6], [5].
We differ from those research works in how we use
the criteria-specific knowledge and how we put those
criteria together to consider how the cloud service
selection affects the criteria evaluation and how some
criteria conflict with others. We find inspiration in
their works but formalise our own criteria to judge the
different options to migrate an application.

IV. Problem Formalisation

In this Section, we formalise our cloud migration
problem starting with the application App to be mi-
grated to the selected cloud service offerings (CSO).
We then formalise the organisation’s requirements Reqs
to migrate App. Finally, we formulate our cloud mi-
gration problem as finding the optimal split of App
to both selected CSO and the premises local to the
organisation that maximises the gains in the selected
cloud migration criteria experienced by the migrated
application. The maximisation problem takes into ac-
count the organisation’s criteria koj and constraints coj

for cloud migration.

App = (C,R ⊆ C×C, −−→PC ,
−→
PR) (1)

We describe in (1) the application App as a composition
of several data and computing components C which
perform their tasks and communicate with one another
through their relations R, R ⊆ C×C. A relation R rep-
resents the link between two components that enables
them to transfer data to each other. Application App’s
components C possess several intrinsic properties

−−→
PC ,

PCi : C→ R; as do the relations (edges) between those
components

−→
PR , PRi : R→R. The number of cores a

component needs to operate or the memory allocation
it needs are examples of components’ properties

−−→
PC .

As for the relations’ properties
−→
PR , an example is the

data transfer rate two components need in order to
provide a satisfactory quality of service.

Reqs = (K,W ,CO) (2)

We formulate in (2) the requirements Reqs defined by
the organisation which wants to migrate App to cloud
environments. The set of cloud migration criteria K
are aggregated according to matrix W to rank only the
migration alternatives which comply to the set of con-
straints CO. K comprises either objective or subjective
criteria. Our approach considers an objective criterion,
koj as seen in (4), if there is a metric to measure a
migration alternative for that specific criterion or a
subjective criterion ksq, based on human intervention,
if there is not. The organisation pairwise compares all
criterion in K to one another to obtain matrix W , which
describes the relative importance of all criteria. From
matrix W we obtain the weights eigen vector ~w used
in our maximisation problem. We explain this in more
detail in Section V.

re-scatter : C→ (⊥ ∪ CSO) (3)

We describe in (3) the re-scatter function due to its
importance for the definition of the organisation’s
criteria and constraints. Based on application App’s
components C, the re-scatter function returns the ap-
plication components C re-scattered into both the
local premises ⊥ and the CSOs. Examples of CSOs are
a small Amazon Elastic Compute Cloud (EC2) instance,
a big Amazon EC2 instance, or an extra small Azure
instance provided by cloud providers such as Amazon,
or Azure. A cloud service provider specifies its CSO’s
properties PCSOi

where
−−−−→
PCSO : (⊥ ∪ CSO)→R. An

example of a PCSOi
is the amount of memory provided

by a CSO such as a small Amazon EC2 instance.

We consider two kinds of criteria, which are relevant
for the organisation which wants to move application
App to cloud environments, depending on whether

these are objective koj or subjective ksq. We mathemat-
ically express in (4) a objective migration criterion.
koj incorporates knowledge related to the available
CSOs, the needs and characteristics of application App,
and the organisation’s cloud migration criteria to move
application App to cloud environments.

koj :

re-scatter︷ ︸︸ ︷
(C→ (⊥ ∪ CSO))×2C × 2R ×

−−→
PC︷ ︸︸ ︷

(C→R)m×
× (R→R)n︸ ︷︷ ︸

−−→
PR

× ((⊥ ∪ CSO)→R)p︸ ︷︷ ︸
−−−−−→
PCSO

→R

(4)

Each criterion koj represents a dimension related
to the cloud migration—e.g. cost, performance, or
sensitivity—and we measure it for every non-rejected
migration strategy. That is, a migration alternative
to re-engineer application App by re-scattering its
components to both the organisation’s premises and
the CSO. Non-rejected migration alternatives com-
ply to the constraints defined (see 5). koj depends
on the function to re-scatter application components,
C → (⊥∪ CSO); the application components and the
relations between them, C and R; the m properties of
the components,

−−→
PC ; the n properties of the relations

between components,
−→
PR ; and the p properties

−−−−→
PCSO

of the CSO. In Section VI-B, we show several examples
of criteria.

Only if we have not specified a metric for a criterion,
we use a subjective migration criterion ksq calculated
by requesting organisations to pairwise compare all
migration strategies for each of these criteria. An exam-
ple of a subjective criterion is the trust an organisation
has in a specific CSO if no metric has been defined
for it. How we calculate ksq is described by Saaty and
Vargas [15] and it evaluates to a number.

cog :

re-scatter︷ ︸︸ ︷
(C→ (⊥ ∪ CSO))×2C × 2R ×

−−→
PC︷ ︸︸ ︷

(C→R)w×
× (R→R)x︸ ︷︷ ︸

−−→
PR

× ((⊥ ∪ CSO)→R)y︸ ︷︷ ︸
−−−−−→
PCSO

→ Boolean
(5)

As for the set of constraints, CO in (2); we de-
fine in (5) each element of the set as a constraint
cog which limits the acceptable migration alternative’s
properties. All the potential strategies to migrate App
have to either comply with all constraints in CO or
be disregarded. We formalise every cog in resemblance
with the criteria formalisation in (4). (5) defines when
to reject a migration alternative according to the or-
ganisation’s criteria, application App architecture and
its properties, and the CSO. Its output is a Boolean
value to show whether a constraint is respected or

not. As an example, by using this constraint formula,
an organisation can define a constraint stating that
a Java Virtual Machine (JVM) has to be runnable
for a particular re-engineered version of application
App deployed into a CSO. More examples of these
constraints are given in Section VI-A.

We look for the optimal split of application App’s
components C done by the re-scatter function (3), so
that we maximise (6):

max
|K |−1∑
i=0

wi · Ki(re-scatter, C,R,
−−→
PC ,
−→
PR ,
−−−−→
PCSO) (6)

where wi refers to the eigen value of the relative weight
of criterion i within the weights eigen vector ~w from
matrix W in (2); and Ki to an objective or subjective
criterion i as described by koj and ksq. Our maximisa-
tion problem, in (6), is subject to the satisfaction of all
constraints co ∈ CO.

V. The InCLOUDer Cloud Migration Decision

Support System

The aim of our cloud migration decision support
system is to rank the different alternatives to adapt
an application to migrate it to cloud environments.
InCLOUDer discards unsuitable alternatives accord-
ing to the specified constraints—as formalised with
(5) in Section IV and illustrated with examples in
Section VI-A—and suggests the highest-ranked strat-
egy. Once not suitable cloud migration alternatives
are discarded, InCLOUDer needs to calculate local
rankings for every alternative based on the migra-
tion criteria. These criteria depend on many prop-
erties and sub-properties related to: the application,
the CSOs, and the user requirements. Hence, it is
a multi-dimensional decision problem [9] that needs
a technique to evaluate the structured hierarchy of
migration criteria. The hierarchy of criteria makes it
easier for organisations to weight different criterion
to one another and also complies with the natural
nature of the migration criteria. Each criterion im-
pacts the ranking process in accordance with how
determinant it is for the success of the application
migration. A criterion can be further specialised by
defining its sub-criteria and usually conflict with other
criteria. Weighting so many conflicting criteria while
taking into account the interdependence between them
burdens organisations and might disrupt their judge-
ment. Additionally, some attributes cannot be easily
measured and quantified to a numerical value. Even
though we can propose metrics to quantify subjective
criterion, we expect that sometimes it will not be feasi-
ble to quantify all criteria and we will need assistance
of the organisation. Therefore we enabled InCLOUDer

to gather information from organisations so that our
decision support system can calculate these subjective
criteria through pairwise comparing cloud migration
alternatives. In order to easily consider trade-offs and
structured relationships between objective and subjec-
tive criteria, quantify them, and aggregate them; we
propose InCLOUDer which includes a ranking system
based on the Analytical Hierarchy Process to address
the multi-criteria decision making [15]. In usual simple
multi-criteria decision making problems, all criteria
are expressed in the same unit but our process lets
us weight criteria expressed in different dimensions.
Weighting the cost of a migration strategy—expressed
in euros— against the respect to national regulations—
expressed in Boolean rationale—is an example of the
kind of challenges the Analytical Hierarchy Process
helps with.

InCLOUDer applies five steps to find the optimal
cloud migration strategy: Step 1, modelling the prob-
lem as a hierarchy with a goal, criteria, and cloud
migration alternatives; Step 2, prioritising the criteria;
Step 3, evaluating the different alternatives for every
criterion; Step 4, checking the consistency of the judge-
ments; and finally Step 5, coming to a decision.

A. InCLOUDer steps

Firstly in Step 1, we describe our multi-criteria prob-
lem with a three-layered hierarchy model—suitable
for the application of the Analytic Hierarchy Process—
by specifying the goal, criteria, and alternatives
of our decision problem. The goal is finding the
highest-ranked cloud migration alternative which
splits the application components into both the organ-
isation’s local premises and CSOs. The criteria are the
different dimensions an organisation considers when
moving an application to cloud environments. For
the sake of simplicity, we defined Reqs in (2) within
Section IV on the basis of the criteria and their weights;
but we use the Analytical Hierarchy Process approach
for hierarchically structured criteria. As in [15], we
calculate the decision matrices DM with the organi-
sation’s cloud migration criteria and weights. DM di-
rectly depends on a set of criteria within a level of the
structured hierarchy of criteria, these criteria relative
weights, and the evaluation of each cloud migration
alternative per each of these criteria [15]. We describe
the decision matrix by formulating each DMy . That is,
the decision matrix for a level y within the structured
hierarchy of criteria consisting of M alternatives and
N migration criteria. InCLOUDer calculates each cri-
terion Crl , where l = [0..N], for each leaf and branch
node within each criteria layer y of the hierarchy. For
each criterion in Crl without sub-criteria, or leaf node,
we calculate Crl by computing either an objective koj

or a subjective ksq criterion. For branch nodes—that
is criteria with sub-criteria— within criteria layer y,
we calculate Crlower , where lower = [0..Q], which is
a criterion similar to Crl but in a lower level of the
criteria hierarchy.

Table I: Decision Matrix

DMy =

Crl : Cr1 Cr2 Cr3 ... CrN
wl : w1 w2 w3 ... wN
A1 : a11 a12 a13 ... a1N
A2 : a21 a22 a23 ... a2N

.
Az : az1 az2 az3 azl azN

.
AM : aM1 aM2 aM3 ... aMN

As seen in Table I, each wl from the eigen vector [15]
for all criteria Crl in layer y is a normalised weight
value per criterion l; Az refers to each alternative to
adapt application App to a CSO; and each az,l evaluates
each alternative Az in terms of the decision criteria
Crl and the relative importance (or weight) of each
criterion wl . Each az,l evaluates directly to a value for
every Crl without sub-criteria or uses another decision
matrix DMlower for the calculation. We describe our
taxonomy of criteria and some exemplary criteria in
Section VI-B. InCLOUDer relies on criteria templates
as pre-defined criteria sets and pairwise comparisons
between each criterion. Organisations customize or
create their own templates tailored to their specific mi-
gration scenario; or otherwise re-use criteria templates
applicable to their specific cloud migration scenario.
A criteria template serves organisations that have sim-
ilar priorities in how to move to cloud environments
applications which posses similar requirements. Fi-
nally, the bottommost level contains the alternatives,
which capture how to adapt the application and which
components to re-scatter to the organisation’s local
premises and to a particular CSO. Our approach to
cloud migration generates the alternatives subject to
the defined constraints CO.

A criteria template contains the pairwise com-
parisons of each criterion to one another so that
InCLOUDer calculates the eigen vector with all criteria
weights, that is Step 2 or the criteria prioritisation.

In Section VI, we explain with more detail Step 3
that is, the alternatives evaluation for all criteria.
Then, InCLOUDer aggregates the migration alterna-
tives by taking into account the eigen vector of weights
computed in Step 2 from the ~W matrix.

Next in Step 4, we validate that the consistency
ratio, CR, does not trespass the acceptance level of
10% that Saaty and Vargas proposed and thoroughly
explained [15]. We check that pairwise comparisons

derive from consistent or near consistent matrices by
dividing our consistency index by the random index
CR = CI/RI . CR assess the uncertainty of the decision
made.

Finally in Step 5, InCLOUDer ranks all alterna-
tives and suggests a decision on cloud migration. The
organisation in charge of the migration could still
pick another one as our approach allows organisation
to correct the criteria and their weights, the appli-
cation components model and properties, the cloud
environment model, or the formula InCLOUDer uses
to evaluate an alternative for a particular criterion.
The organisation can re-define the latter by either
changing how an alternative is automatically evaluated
or manually evaluating that alternative.

VI. InCLOUDer’s Semi-Automatic Cloud Migration

The semi-automation of the migration decision re-
lieves organisations which want to move an application
to cloud environments of the burden of considering
all options and the multi-dimensional repercussions
of picking one over another. InCLOUDer automati-
cally generates the alternatives, rejects the non-viable
ones, and finally weights them for every criterion. We
first show in Section VI-A examples of constraints
cog to describe the automatic alternatives generation
subject to the constraints in CO. Then, we explain in
Section VI-B the criteria by showing examples which
explain how InCLOUDer automatically weights the
remaining alternatives.

A. Alternatives Generation Subject to Constraints in CO

InCLOUDer generates architectural design alterna-
tives to migrate an application to cloud environments
subject to the constraints defined by an organisation
to support the hierarchy modelling or Step 1 described
in Section V-A. Every alternative specifies which com-
ponents run within the local premises of the organi-
sation Clocal and which components Ccso migrate to a
specific CSO. Where Ccso denotes a set of components
migrated to a specific CSO:

Ccso ⊆ C : ∀c ∈ Ccso re-scatter(c) ∈ CSO (7)

As seen in (5) in Section IV, a constraint limits the
acceptance of cloud migration alternatives subject to
a specific property. A constraint represents a require-
ment vital for an application regardless of whether
it runs within the local premises or in a selected
cloud environment. An organisation adds, extends, or
removes constraints with our cloud migration decision
support system. We show two examples of constraints
included in InCLOUDer:

Security and privacy constraint: InCLOUDer copes
with sensitivity issues by keeping locally components

which store or process data that organisations do not
want to move out of their premises to a particular
cloud service. This can be due to lack of trust in
that cloud provider or in the communications channel
used for migration. In this case, InCLOUDer keeps
locally the components with high sensitivity levels;
that is, High Sensitivity (PCsensitivity

= 2) and National
Security High Sensitivity (PCsensitivity

= 3) [5]. Where
PCsensitivity

is an InCLOUDer PCi component property,
as described in (1) within Section IV, whose value
represents a component’s sensitivity level. As we show
in (8), InCLOUDer returns a cosensitivity value equal
to False for cloud migration alternatives which do not
comply with the sensitivity-related constraints and are
therefore rejected:

cosensitivity(re-scatter, C,R,
−−→
PC ,
−→
PR ,
−−−−→
PCSO) =

= ¬ ∃c ∈ Ccso : [re-scatter(c) ∈ CSO
∧ Pcsensitivity ≥ 2]

(8)

An organisation which trusts the migration mecha-
nisms and the CSO would relax this constraint.

Explicit requirements: InCLOUDer generates alter-
natives which comply with the application App re-
quirements according to the components model and
the components’ properties specified by an organisa-
tion. Additionally, InCLOUDer lets organisations ex-
plicitly define constraints disallowing the migration of
a component to a CSO which does not supply a vital
feature. For example, an explicit constraint does not
allow the generation of an alternative that migrates
a component to a CSO which does not support a
required storage technology or proprietary tool, say
MongoDB as in constraint comongoDB in (9).

comongoDB(re-scatter, C,R,
−−→
PC ,
−→
PR ,
−−−−→
PCSO) =

= ¬ ∃c ∈ Ccso : [re-scatter(c) ∈ CSO
∧ PcmongoDB

= 1∧ PCSOmongoDB
= 1]

(9)

where PcmongoDB
is a component property PCi as seen in

1 within Section IV whose value 1 represents a compo-
nent which requires MongoDB; and where PCSOmongoDB

is a component property PCSOi as seen in Section IV
whose value 1 represents a CSO which supports Mon-
goDB.

B. Automatic Alternatives Weighting

The automatic alternatives weighting pertains to
Step 3 described in Section V-A. Provided that we
have defined a metric for a criterion, InCLOUDer
automatically calculates the score of all alternatives
for that criterion. Next, it aggregates the alternatives
based on the criteria eigen vector, as described in Step

2 or the criteria prioritisation Step, to obtain the global
ranking for all the alternatives.

Our cloud migration decision support system uses
our taxonomy and criteria metrics to measure a
cloud migration alternative for a specific criterion.
We present an extensible criteria taxonomy based on
the Service Measurement Index framework [10] and
SMICloud [4]:

1) Accountability: is a subjective attribute koac that
affects trust and is built based on several other at-
tributes such as: auditability, compliance, contracting
experience, data ownership, ease of doing business,
provider ethics, or service sustainability [10]. For our
problem, accountability includes the commitment of
a cloud provider to comply with policies and le-
gal, ethical, and moral obligations. The degree of
accountability of a cloud provider depends on the
mechanisms they put into action to measure, prevent,
and act to take responsibility for the stewardship
of personal and confidential data entrusted to them
[10]. InCLOUDer currently considers the alternative
accountability equal to the CSO’s accountability if the
alternative migrates a component C with consider-
able sensitivity level. That is, all levels except Low—
PCsensitivity

= 0. Hence, the following sensitivity levels:
Moderate—PCsensitivity

= 1, High—PCsensitivity
= 2, and Na-

tional Security High—PCsensitivity
= 3. We formalise this

criterion as koac = PCSOac
if ∃c ∈ CCSO : PCsensitivity

> 0.
2) Agility: the use of cloud environments to run

an application enables an organisation to quickly and
cost-efficiently expand, change, and integrate new IT
capabilities to accommodate business needs. Agility
depends on its sub-criteria of elasticity, portability,
adaptability, and flexibility. We show as an example
how to calculate the degree of portability koport of an
alternative to a CSO. Hence, the degree to which the
effort of porting the application to the new environ-
ment kocP ort is less than the cost of redevelopment
kocReDev or 1− cost to port

cost to redevelop [16]:

kac(re-scatter, C,R,
−−→
PC ,
−→
PR ,
−−−−→
PCSO) =

= 1− kcP ort(re-scatter, C,R,
−−→
PC ,
−→
PR ,
−−−−→
PCSO)

kcReDev(re-scatter, C,R,
−−→
PC ,
−→
PR ,
−−−−→
PCSO)

(10)

Currently InCLOUDer relies on human intervention
to determine with pairwise comparisons kocP ort and
kocReDev as explained in the cost criteria Section VI-B4.
3) Assurance: defines the probability of the ap-

plication to comply to the Service Level Agreement
(SLA) and depends on the services’ availability, main-
tainability, recoverability, reliability, resiliency or fault
tolerance, service stability, or serviceability [10]. These
sub-criteria are highly affected by the local premises
and the selected CSO properties running the applica-

tion’s components. For example, in our approach the
average availability—hence, service uptime divided by
the total service time— depends on the availability
properties specified with InCLOUDer for each com-
ponent, the SLA of the selected CSO, and the local
infrastructure:

koav(re-scatter, C,R,
−−→
PC ,
−→
PR ,
−−−−→
PCSO) =

=
∑
c∈C

PCSOup

PCSOup
+ (PCSOdown

+ (Pcdown − P⊥down
))

(11)

where PCSOup
and PCSOdown

are PCSOi
infrastructure

properties that represent the uptime and downtime
in milliseconds of a component running either on the
local infrastructure (⊥) or a CSO; and Pcdown is the
total downtime time of a component which are down
if the infrastructure that hosts it is down, given that
Pcdown ≥ PCSOdown

.
4) Cost: organisations are interested in lowering the

effort to adapt the application to cloud environments
koef f , the on-going cost of running the application
koog , and the one-time migration costs komc [1].

Given that Pcsize is a component property PCi whose
value represents a component’s size; the Ccso set for-
mulated in (7); and the C(cso, Pcsize=i) set which refers to
a set of components in which each component’s size
is i, Pcsize = i, given that C(cso, Pcsize=i) ⊆ CCSO ⊆ C as
formalised in (12):

C(cso, Pcsize=i) = {c ∈ Ccso : Pcsize = i} (12)

We formulate the one-time migration cost criterion
komc in (13) as an example of a cost criterion:

komc(re-scatter, C,R,
−−→
PC ,
−→
PR ,
−−−−→
PCSO) =

=
N∑
i=0

M i ∗ |C(cso, Pcsize=i)|
(13)

where a sum runs over the different component sizes
i from 0 to N , which InCLOUDer defines from Very
Small (Pcsize = 0) to Very Large (Pcsize = 6 = N); and M
is the difference in magnitude from one level, such as
Very Small, to the next one, Small.

Our current approach to measure the effort to adapt
koef f an application to cloud environments takes into
account the cost of porting kocP ort or redeveloping the
application kocReDev . Currently we incorporate organ-
isations into the cloud migration decision-making by
letting them pairwise compare alternatives to calculate
these criteria. Our future work will calculate koef f
without human intervention.

5) Performance: is a complex research field on its
own therefore InCLOUDer will, as future work, inte-
grate existing approaches to estimate performance to
measure the performance effects of re-scattering appli-

cations’ components such as the Palladio1, Maude2 , or
Kieker approaches3.
6) Security and Privacy: concern the majority of

organisations moving to cloud environments because
they fear losing control of parts of the applications
and data they host outside their premises [5]. As
seen in Section VI-A, InCLOUDer defines a constraint
that forces leaving High and National Security High
Sensitivity components locally to the organisation. Our
approach considers irrelevant, in terms of security and
privacy, whether to move Low Sensitivity data out of
an organisation’s premises due to their lower sensitiv-
ity level [5]. Which leaves InCLOUDer with judging
whether to migrate data and components marked with
Moderate Sensitivity to a CSO. The fewer elements
with Moderate Sensitivity—that is Pcsensitivity = 1—an
alternative migrates to a CSO, the higher InCLOUDer
ranks that alternative:

kosen(re-scatter, C,R,
−−→
PC ,
−→
PR ,
−−−−→
PCSO) =

= |C(cso, Pcsensitivity =1)|
(14)

where we consider the Ccso set as seen in (7); and the
C(cso, Pcsensitivity =1) set of components in which each com-
ponent migrated to that CSO has a Moderate sensitivity
level. We formulate C(cso, Pcsensitivity =1) ⊆ CCSO ⊆ C as:

C(cso, Pcsensitivity =1) = {c ∈ Ccso : Pcsensitivity = 1} (15)

Given that PCsensitivity
is a component property PCi

whose value represents a component’s sensitivity level,
(14) returns the number of components with Moderate
Sensitivity moved to a cloud environment.

7) Usability: the ease of use of a component
depends on its accessibility, client requirements to
use it, installability, learnability, operability, suitabil-
ity, transparency, and understandability [10]. These
sub-criteria are rather imprecise and subjective. There-
fore, InCLOUDer allows organisations to subjectively
estimate usability based on the application’s compo-
nents model and some CSO properties related to the
ease of use.

VII. Prototype

With the aim of validating our theoretical formu-
lation and the InCLOUDer cloud migration decision
support system we built a prototype to find and rank
adaptations to migrate applications to cloud environ-
ments. The InCLOUDer supplies three EMF-based4

editors to let organisations model the application for
migration, the migration criteria, and the CSO which

1PCM: https://sdqweb.ipd.kit.edu/wiki/Palladio Component Model
2Maude: http://maude.cs.uiuc.edu
3Kieker: http://kieker-monitoring.net/framework/
4Eclipse Modelling Framework: www.eclipse.org/modeling/emf/

provide InCLOUDer with the input it needs as de-
scribed in Section IV. One of these editors lets organ-
isations model the relations R between components C

as well as their properties,
−−→
PC and

−→
PR . InCLOUDer

gathers the cloud migration criteria and their impor-
tance relative to each other—koi , ksq, and W—with
another editor. InCLOUDer includes a cloud service
modelling approach based on variability points [17]
to let cloud providers model their CSO by describing
CSO’s properties and capabilities (CSO and

−−−−→
PCSO).

Given these three models, InCLOUDer generates
suitable alternatives (Section VI-A) and automatically
weights them to present the highest-ranked migration
strategy (Section VI-B). InCLOUDer contains two feed-
back mechanisms to both improve the migration sup-
port and let the organisation drive the decision-making
regardless of the migration strategy suggested.

VIII. Conclusion

We have explained the multi-dimensional
decision-making process carried out to migrate
applications to cloud environments and how to
formalise its effects in the cloud migration criteria.
With the aim of helping organisations cope with
these effects we supply the InCLOUDer cloud
migration decision support system which builds on
top of the Analytic Hierarchy Process. InCLOUDer
allows formalising the cloud migration problem by
defining the cloud migration criteria, the cloud service
offerings, and the architecture and properties of
the application. Given all that, InCLOUDer assists
organisations in adapting their applications to cloud
environments according to their many interdependent
criteria for cloud migration. We provided a taxonomy
of these organisation’s objective and subjective criteria
for cloud migration related to accountability, agility,
assurance, cost, performance, security and privacy,
and usability. We provided examples of these criteria
and explain how InCLOUDer follows the Analytical
Hierarchy Process approach to trade a criterion off
for others and how it only generates alternatives
which comply to our exemplary constraints. An
alternative for cloud migration re-scatters applications’
components to both cloud environments and the local
premises to cope with sensitivity issues. Our decision
support system weights these alternatives by taking
into account our criterion metrics and their importance
relative to other criterion. When no metric is provided
the weighting is done manually by the organisation.

In this paper, we have provided a formalisation
approach for multi-criteria application migration to
cloud environments. As future work we aim to enhance
and evaluate our approach with automated metrics. In
particular, we will focus on the migration of Business

Intelligence (BI) applications because BI is an interest-
ing study due to the large number of interconnected
components. Through this exercise we plan to evaluate
and quantify the gains accomplished in terms of the
cloud migration criteria presented in this paper. We
also plan to test the incorporation of multiple cloud
environments and how to leverage them on runtime
instead of on design time as we do today.

Acknowledgment

This work is part of the RELATE project supported
by the European Commission under the 7th Frame-
work Programme FP7 with Grant agr. no. 264840ITN.

References

[1] F. A. Armbrust, M. and R. Griffith, “A view of Cloud
Computing,” Communications of the ACM, 2010.

[2] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch,
“How to adapt applications for the cloud environment:
Challenges and solutions in migrating applications to
the cloud,” Computing, vol. 95, no. 6, pp. 493–535, 2013.

[3] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and
P. Teregowda, “Decision support tools for Cloud migra-
tion in the enterprise,” in IEEE Conf. on Cloud, 2011.

[4] S. K. Garg, S. Versteeg, and R. Buyya, “Smicloud: A
framework for comparing and ranking cloud services,”
in 2011 4th IEEE Int. Conf on UCC, 2011.

[5] D. Rosado, R. Gomez, D. Mellado, and E. Fernandez-
Medina, “Security analysis in the migration to Cloud
environments,” Future Internet, 2012.

[6] M. Hajjat, X. Sun, Y. Sung, D. Maltz, S. Rao, K. Sripanid-
kulchai, and M. Tawarmalani, “Cloudward bound: plan-
ning for beneficial migration of enterprise applications
to the Cloud,” vol. 40, pp. 243–254, ACM, 2010.

[7] A. Juan-Verdejo and H. Baars, “Decision support for
partially moving applications to the cloud: the example
of business intelligence,” in Proc. of the int. workshop on
Hot topics in cloud services, pp. 35–42, ACM, 2013.

[8] V. X. Tran, H. Tsuji, and R. Masuda, “A new QoS
ontology and its QoS-based ranking algorithm for web
services,” Simulation Modelling Prac. and The., 2009.

[9] M. Zeleny and J. L. Cochrane, Multiple criteria decision
making, vol. 25. McGraw-Hill New York, 1982.

[10] CSMIC, “Introducing the service measurement index.”
http://www.cloudcommons.com/web/cc/about-smi,
2011. Online; Last Accessed 11-December-2013.

[11] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp:
comparing public cloud providers,” in Proc. of the 10th
conf. on Internet measurement, ACM, 2010.

[12] M. Menzel and R. Ranjan, “Cloudgenius: Automated
decision support for migrating multi-component enter-
prise applications to Clouds,” Technical Report, 2011.

[13] T. Binz, F. Leymann, and D. Schumm, “Cmotion: A
framework for migration of applications into and be-
tween Clouds,” pp. 1–4, IEEE, 2011.

[14] M. Klems, J. Nimis, and S. Tai, “Do Clouds compute? A
framework for estimating the value of Cloud Comput-
ing,” Designing E-Business Sys., 2009.

[15] T. Saaty and L. L. G. Vargas, Models, methods, concepts,
and applications of the AHP. Springer, 2001.

[16] J. D. Mooney, “Bringing portability to the software
process,” Dept. of Statistics and Comp. Sci., 1997.

[17] E. Wittern, J. Kuhlenkamp, and M. Menzel, “Cloud ser-
vice selection based on variability modeling,” in Service-
Oriented Computing, pp. 127–141, Springer, 2012.

